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ABSTRACT
The dynamics of the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough 
infections remain unclear, particularly when compared to responses in naive individuals. In this longitudinal prospective 
cohort study, 13 participants were recruited. Peripheral blood samples were collected every other day until day 7 after 
symptom onset. Transcriptome sequencing, single-cell sequencing, T-cell receptor (TCR) sequencing, B-cell receptor 
(BCR) sequencing, Olink proteomics, and antigen-antibody binding experiments were then performed. During the 
incubation periods of breakthrough infections, peripheral blood exhibited type 2 cytokine response, which shifted to 
type 1 cytokine response upon symptom onset. Plasma cytokine levels of C-X-C motif chemokine ligand 10, 
monocyte chemoattractant protein-1, interferon-r, and interleukin-6 show larger changes in breakthrough infections 
than naïve infections. The invammatory response in breakthrough infections rapidly subsided, returning to 
homeostasis by day 5 after symptom onset. Notably, the levels of monocyte-derived S100A8/A9, previously 
considered a marker of severe disease, physiologically significantly increased in the early stages of mild cases and 
persisted until day 7, suggesting a specific biological function. Longitudinal tracking also revealed that antibodies 
anti-Receptor Binding Domain (anti-RBD) in breakthrough infections significantly increased by day 7 after symptom 
onset, whereas cytotoxic T lymphocytes appeared by day 5. This study presents a reference for interpreting the 
immunological response to breakthrough infectious disease in humans.
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Introduction

Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) a1ects billions of people worldwide. 
Despite 13 billion vaccines having been administered 
globally [1], breakthrough infections and reinfections 
in vaccinated and previously infected individuals are 
increasingly common [2]. Frequent breakthrough 
infections also occur with most respiratory viruses, 
such as in3uenza [3], rhinovirus [4], and common 
coronaviruses [5]. The disease burden of break-
through infections of respiratory viruses is significant, 
with approximately 1 billion people infected with 
in3uenza annually, and countless others infected 

with various respiratory viruses. Among those with 
in3uenza, 3–5 million progress to severe cases, posing 
a serious societal threat [6]. The transition to severe 
disease often occurs in the second week after symptom 
onset [7, 8]. Therefore, whether patients can restore 
homeostasis through an e1ective immune response 
or gradually experience immune dysregulation during 
the first week post-symptom onset is critical.

Previous studies have primarily focused on com-
paring immune responses at a single time point 
between severe and mild cases, as well as on pathogen 
escape [9, 10], antigen recognition [11–14], and 
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vaccine ehcacy [15–18]. Understanding of how 
patients restore homeostasis through an e1ective 
immune response during the first week after symptom 
onset is limited. Human challenge studies have con-
ducted in-depth analyses of the immune response 
after primary infection onset, including viral kinetics, 
plasma cytokine levels, and antibody levels [19–21]. 
Nevertheless, the understanding of the immune 
changes during the first week of breakthrough infec-
tion and how they di1er from naïve infections is 
inadequate [22]. Possible reasons for this gap include 
the dihculty in determining prior infection history 
and the challenge in obtaining consecutive clinical 
samples in the very early stages of illness. Additionally, 
recent studies have associated elevated S100A8/A9 
(also referred to as calprotectin or MRP8/14) 
expression with severe COVID-19 progression, indi-
cating a potential role in driving excessive in3amma-
tory responses [23,24]. However, S100A8/A9 may 
also function as a crucial component of normal 
immune responses, and insuhcient levels could be 
disadvantageous [25].Hence, the precise role of 
S100A8/A9 in SARS-CoV-2 pathogenesis remains 
incompletely understood, particularly in the context 
of early-stage.

In December 2022, anticipating a large-scale infec-
tion event in China, we designed an experiment to fol-
low patients who experienced breakthrough infections 
after vaccination. Peripheral blood was collected and 
subjected to multimodal immune function testing. 
Thirteen volunteers were recruited either before or 
after symptom onset and followed until day 7 from 
symptom onset. Pre-symptom samples were obtained 
from six patients. For all 13 participants, samples were 
collected every other day. Through transcriptome 
sequencing, single-cell sequencing, T-cell receptor 
(TCR), B-cell receptor (BCR) sequencing, Olink pro-
teomics, and antigen–antibody binding experiments, 
a comprehensive longitudinal analysis of the immune 
response was performed during breakthrough infec-
tions at the acute stage. The findings o1er a detailed 
atlas of the recall immune response after infection 
during the first week.

Methods

Study design

The prospective cohort study was conducted at China- 
Japan Friendship Hospital. This study employs a 
longitudinal research design, involving the continuous 
measurement of the same patients at multiple prede-
termined time points. During winter 2022 after the 
end of the zero-COVID policy, majority of Chinese 
citizens faced the possibility of being infected by 
SARS-CoV-2. To capture the natural process of 
immune response for SARS-CoV-2, healthy volun-
teers not infected or within one week after symptom 

onset were enrolled. To be eligible for participation, 
volunteers needed to be at least 18 years of age with 
no chronic lung diseases, immune system diseases, 
or pneumonia over the previous six months, no cold 
or fever symptoms in the past three months, not preg-
nant or breastfeeding, no history of cancer, and no 
glucocorticoid use within 6 months were enrolled in 
this study. All subjects had received inactivated 
COVID-19 vaccine 3 times. Prior to the Omicron 
infection, all participants had consistently tested nega-
tive for SARS-CoV-2 across multiple rounds of nucleic 
acid and antibody testing, which were conducted as 
part of regular, government-mandated surveillance 
protocols. Nucleic acid testing or antigen testing was 
used to confirm whether the study participants were 
infected by SARS-CoV-2 or not during the study 
period. On the day of enrolment, blood samples 
were collected immediately. Subsequently, the samples 
were taken every other day until day 7 after symptoms 
onset. Sex assigned at birth of participants was deter-
mined based on self-report. The sex data indicates that 
there were 11 female and 2 male participants.

Sample collection

Approximately 6 ml of peripheral blood was collected 
from each enrolled patient at every sampling time. A 
total of 47 peripheral blood samples were collected. 
Blood samples were centrifuged with Ficoll-Paque 
PLUS (Cytiva, Cat# 17144003) within 30 min of col-
lection. Plasma was collected and stored directly in a 
−80°C freezer. After the PBMCs were collected, they 
were washed with PBS (Invitrogen), centrifuged, and 
a freezing solution containing 90% FBS (Cat# 
10099141C) was added containing 10% DMSO (Cat# 
67-68-5, Sigma). The samples were aliquoted into 1 
ml tubes, frozen by gradient cooling, and stored at 
−80°C for 3 days. They were transferred to liquid 
nitrogen. PBMCs were subjected to bulk transcrip-
tome sequencing by directly adding to Trizol for 
RNA extraction. PBMCs for single-cell sequencing 
were stained with AO/PI reagent after recovery, fol-
lowed by counting and enrichment sequencing.

BULK RNA sequencing and data processing

Total RNA from 47 samples from 13 participants was 
extracted using Trizol reagent (Invitrogen, Cat# 
15596026) according to the manufacturer’s protocol 
and reverse-transcribed into cDNA. Bulk RNA-seq 
was performed using the Illumina Novaseq6000 with 
PE150 read length. The raw reads were evaluated for 
quality by Fastp (v.0.23.2) [26] and aligned to 
human GRCh38 to obtain the raw counts. The Tran-
scripts Per Million (TPM) date were processed by 
DESeq2 (v.1.42.0) [27]. The gene expression data is 
filtered to remove genes with low average expression 
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across samples (lower than the 20th percentile of the 
average expression values). Hierarchical clustering is 
performed on the scaled and filtered gene expression 
data. Based on the silhouette coehcients, clustering 
was performed with K = 9. Principal Component 
Analysis (PCA) was employed to explore the vari-
ations of di1erent patients. ComplexHeatmap package 
was used for visualization.

DESeq2 was used to identify the DEGs (di1erent 
expression genes) for di1erent groups by (P.djust <  
0·05) by count Data. The DEGs for each group were 
compared with the pre-symptoms group and visual-
ized using a Venn plot (https://bioinfogp.cnb.csic.es/ 
tools/venny/index.html). The DEGs were grouped by 
the hclust of R. The Go terms were enriched by clus-
terProfiler(v.4.0.2) [28] and visualized by ggplot2.

Olink proteomics and data processing

Total 47 plasma sample from 13 participants was 
measured using the Olink® Target 96 in3ammatory 
panel (Olink Proteomics AB, Uppsala, Sweden) accord-
ing to the manufacturer’s instructions. The final assay 
read-out is presented in Normalized Protein 
eXpression (NPX) values, which is an arbitrary unit 
on a log2 scale, in which a high value corresponds to 
higher protein expression. The categorization of the 
fitting curves is performed using MFuzz [29] (https:// 
github.com/junjunlab/ClusterGVis).

The data from challenge study [20] underwent the 
following transformation, facilitating comparison 
with our Olink proteomics data.

Y = Log2 Y
Ybaseline

􏼡 􏼢

The results are fitted to a curve by A fourth-order 
polynomial fit in ggplot2 (v.3.4.1). The comparison 
of trends between two sets of fitted curves was con-
ducted using Spearman’s g (rho) coehcient.

The optimal number of clusters is determined 
based on the degree of match between the fitting 
curves and their categorization.

Identification of SARS-CoV-2 genotypes

13 Nasopharyngeal swabs from 13 patients were using 
to identify of SARS-CoV-2 genotypes. Enriched 
SARS-CoV-2 whole genome amplification was per-
formed with an equimolar mixture of primers using 
the SARS-CoV-2 Full Length Genome Panel following 
the manufacturer’s protocol (2205, Genskey, Beijing, 
China). Brie3y, for COVID-19 patient samples, total 
RNA was extracted and reverse-transcribed to syn-
thesize first-strand cDNA. PCR amplification was con-
ducted for 35 cycles using SARS-CoV-2-specific 
primers. Following amplification, the PCR product 

was purified using DNA clean beads, and sequencing 
libraries were constructed by enzyme digestion and 
PCR-free library preparation reagents. The prepared 
library was then sequenced on an MGISEQ-2000 plat-
form with 100 bp single-end reads using a sequencing 
reaction kit (GS-2000-FCS-SE100, Genskey, Beijing, 
China).

B cell enrichment and mixing process

After the cells were recovered, they were added to ice- 
cold RPMI1640 culture medium. After AO/PI stain-
ing, the following operations were performed accord-
ing to the number of living cells. For living cells of 
more than 500,000, negative enrichment of B cells 
was done using antibody magnetic beads. For living 
cells less than 500,000, a total of 10,000 cells were 
directly captured for sequencing. The B cell-negative 
enrichment operation was done according to the man-
ufacturer’s instructions (EasyTM Human Pan-B cell 
Enrichment Kit, Stem Cell. Cat# 19554). In brief, 
50ul Enrichment Cocktail was added to 0·5 ml 
PBMC cell suspension (0·5-5 x106). Mix well and 
stand at room temperature for 10 min. Then 75ul vor-
texed Magnetic Particles was added to the mixture and 
leave it at room temperature for 5 minutes. Then 2·5 
mL EasySep™ Bu1er (Cat# 20144) was added, and 
the mixture was gently pipet 2–3 times, and placed 
on the magnetic stand for 5 minutes. The directly 
poured the cells into another 5 ml tube, and the tube 
was centrifuged at 300 g at 4°C for 5 min. Then super-
natant was discarded. 0·1 ml 1640 + 2%FBS medium 
was added and the cell suspension was filtered using 
a 37um cell Strainers. After enrichment, B cells and 
PBMC were mixed at a ratio of 1:1. Finally, 10,000 
cells were captured and then sequenced.

scRNA library preparation, sequencing, and 
data processing

Cell suspensions of 25 samples from 5 patients were 
barcoded using the ReagentSeekOne® Digital Droplet 
Single Cell 5’ library preparation Kit (SeekGene Cat# 
K00501-24), SeekOne® DD Single Cell TCR Enrich-
ment Kit (Human) (SeekGene Cat# K00601-24), and 
SeekOne® DD Single Cell BCR Enrichment Kit 
(Human) (SeekGene Cat# K00701-24). Single-cell 
RNA libraries were prepared following the manufac-
turer’s instructions. The sequencing libraries had a 
unique sample index, individually. The libraries were 
sequenced using an Illumina NovaSeq 6000 with 
PE150 read length.

The raw scRNA data was aligned to human 
GRCh38 to obtain a gene expression matrix using 
SeekSoul®Tools. Low-quality cells were filtered using 
Seurat (4.3.0) [30] based on cells, in which the number 
of detected genes <200 or >5000 were deleted. Next, 
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we used Median Absolute Deviation to filter cells 
a1ected by mitochondrial genes and the filtered 
counts were used for the downstream analysis.

The scRNA doublet data was predicted using 
Scrublet (v.0.2.3) [31] using a typical work3ow for 
each sample. We next integrated the datasets of di1er-
ent sample cells into a shared space for unsupervised 
clustering by the harmony algorithm (v.0.1.0) [32] 
for batch e1ect correction with default parameters. 
We then identified the variable genes by FindVariable-
Genes Seurat function and determined the variability 
of the numbers of UMIs by ScaleData Seurat function. 
Dimension reduction was done with RunPCA and 
RunUMAP Seurat function. We clustered the cells 
using FindClusters Seurat function by the Leiden 
algorithm[33] for the 20 dims at a resolution of 0·8. 
The characteristic genes in these clusters were ident-
ified by FindAllMarkers Seurat function, which com-
pares each cluster to the others. These marker genes 
were expressed in a minimum of 10% of the cells in 
their cluster and at a minimum log fold-change 
threshold of 0·25 (FDR < 0·01, logFC > 0·25, Wilcoxon 
Rank-Sum test). The clusters which expressed two sets 
of well-studied canonical markers of the major cell 
types were labelled as doublets and the erythrocytes, 
which highly expressed HBA, HBB, and HBD, were 
excluded in the following analysis. In total, 6 major 
cell types were identified, including B cells (MS4A1, 
CD79A, CD79B), Myeloid cells (CD14, LYZ, CST3), 
NK cells (GNLY, NKG7, CD247), T cells (CD3D, 
CD3E, CD4, CD8A, CD8B), proliferating cells 
(Mki67, TOP2A) and Plasma cells (JCHAIN, MZB1). 
These major clusters were further classified into 26 
subsets representing di1erent cell subpopulations 
within major cell lineages. Their canonical and signa-
ture marker genes for each cluster were deposited in 
Fig. S4, 5, S6c. The functional enrichment results of 
the cell subpopulations were analyzed by ClusterGVis 
(v.0.1.1) and Mfuzz(2.62.0).

Gene ontology (GO) enrichment analysis of the 
DEGs was implemented through the clusterProfiler 
(v.4.0.5) R package [34]. GO terms with a corrected 
p-value less than 0·05 were considered significantly 
enriched for DEGs. KEGG [35] was used to identify 
the high-level functions and utility of biological sys-
tems (e.g. cells, organisms, and ecosystems) from mol-
ecular-level information, specifically, the generation of 
large-scale molecular data sets. Genome sequencing 
and other high-throughput experimental technologies 
(http://www.genome.jp/kegg/). The clusterProfiler R 
package was used to test the statistical enrichment of 
the DEGs in KEGG pathways.

TCR and BCR analysis

TCR/BCR sequences of the 25 samples from 5 patients 
were assembled and quantified using the 

SeekSoul®Tools vdj protocol by GRCh38. The outputs 
of the assembled contigs for the TCR were filtered 
and processed by scRepertoire (v.1.7.0) [36] and the 
clonotype was analyzed for each T cell. The down-
stream analysis of the TCR was done using scReper-
toire. The clonotypes of the BCR were also analyzed 
using Change-O (v.1.3.0) to examine the BCR clono-
type dynamics following the Change-O work3ows 
[37]. The polar plot was used to show the usage of 
IGHV. The Sankey diagram was used to display [] 
VJ pairs. if barcodes are identical, they are used to 
match the [ and ] VJ regions.

Enzyme-linked immunosorbent assay (ELISA)

Total 47 plasma sample from 13 participants was 
measured using ELISA to determine the amount of 
antigen-specific immunoglobulins in serum, SARS- 
CoV-2 RBD (Wuhan-Hu-1, homemade), RBD 
(BA.4/5, SinoBiological, Cat# 40592-V08H130), 
N(Wuhan-Hu-1, SinoBiological, Cat# HPLC-40588- 
V07E)and RBD (BF.7, SinoBiological, Cat# 40592- 
V08H140) were used to coat 96-well plates (CORN-
ING, REF: 3690) overnight at 4°C. Serially diluted 
sera were added and incubated, and the horseradish 
peroxidase (HRP)-conjugated anti-human IgG(H +  
L) (Promega, REF: W4031) was used for detection. 
3,3’,5,5’-tetramethylbenzidine (Sigma-Aldrich) was 
used as the HRP substrate, and the optical density at 
450 nm was measured using a microplate reader 
(SpectraMax, Molecular Devices, USA), and analyzed 
with GraphPad Prism software. The results were 
plotted using the A450 value of each well. The total 
AUC was then calculated and compared with the 
standards.

Area under curve (AUC)

The AUC is calculated as follows: OD450-570 value as 
the y-axis and the log value of the serum dilution cor-
responding to the well as the x-axis to establish a 
curve, and then y = 0 as the baseline to calculate the 
area under the curve (AUC). Each point represents 
the data from one patient.

Symptom evaluation

Enrolees were asked about their relevant symptoms. 
For patients with pre-symptomatic samples, their 
symptoms were prospectively recorded at the time of 
each sampling. For patients who only had post-onset 
samples, their symptoms before enrolment were 
recorded retrospectively, whereas their symptoms 
after enrolment were recorded for each sampling 
time and recorded prospectively. Symptoms included 
diarrhoea, vomiting, nausea, headache, shortness of 
breath dyspnoea, muscle or body aches (or soreness), 
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chills or shaking, fatigue, sore or dry throat, conges-
tion or runny nose, and cough. Patients were first 
asked if they had any of these symptoms. If so, refer-
ring the human challenge experiment, the symptoms 
were divided into three levels, absence of symptoms, 
one just noticeable, whereas the other being clearly 
bothersome some of the time.

Statistical analysis

For descriptions of patient symptom numbers, mean 
values and standard errors (SE) were utilized. Anti-
bodies titers were characterized using their mean 
values and SE. The results from Olink proteomics 
were presented using loess curve fitting. For the com-
parison between longitudinal symptoms and severity, 
two-way RM ANOVA mixed-e1ects models were 
used. Normality was tested using the Shapiro-Wilk 
test, and multiple comparisons were conducted using 
Dunnett’s multiple comparisons test and ,ídák’s mul-
tiple comparisons test. The longitudinal comparison 
of antibodies and the comparison among di1erent var-
iants were conducted using a Mixed-e1ects model 
(restricted maximum likelihood, REML). For multiple 
comparisons, Dunnett’s multiple comparisons test was 
employed. Geisser-Greenhouse correction was used 
for sphericity. GO enrichment analysis uses hypergeo-
metric distribution tests and controls the false discov-
ery rate by adjusting P-values using the Benjamini- 
Hochberg method, ultimately selecting significantly 
enriched GO terms (q-value < 0·05). The Spearman 
rank correlation test and wilcoxon test was employed 
to compare the trends in cytokine changes between 
this study and the challenge study. The number and 
percentage of subgroups for single-cell sequencing 
results were described using mean values and SE. 
The top 5 upregulated and downregulated di1erential 
genes in myeloid cells, comparing pre-symptom and 
post-symptom periods, were identified and visualized 
using volcano plots. Temporal variations in di1erent 
BCR subtypes were shown by their mean proportion.

For all comparison, two-sided P values less than 
0·05 were considered statistically significant. Graph-
Pad (version 9.5.1) and R (version 4.2.3) were 
employed for statistical analyses.

Results

Symptom development and dynamics of 
antibody response

A total of 13 volunteers, aged 23–35 years, participated 
in this study. Peripheral blood samples were collected 
immediately after enrolment, and participants were 
followed until day 7 from symptom onset. The day 
on which patients exhibited symptoms was defined 
as day 1, and the sampling time before symptom 

appearance was defined as pre-symptoms. Samples 
were obtained from six volunteers before illness 
onset (Figure 1(a)). Samples from patients who com-
pleted all sampling points were selected for single- 
cell, TCR, and BCR sequencing. All samples under-
went transcriptome sequencing, Olink proteomics, 
and antigen–antibody binding experiments (number 
of samples = 47). Symptoms were recorded from 
symptom onset till day 7 (Figure 1(b)). The average 
number of symptoms that were just noticeable was 
3·35 on day 1, which slowly declined to 3·28 on day 
3 and then sharply fell to 1·57 on day 7. For symptoms 
that were just noticeable, a significant di1erence was 
noted on days 5 (P = 0·0010) and 7 (P < 0·0001) com-
pared with day 1. As for symptoms that are unbear-
able, a significant numerical di1erence only appears 
on day 7 compared with day 1 (P = 0·0321). Between 
these two categories of symptoms, a significant di1er-
ence was observed until day 7 (P < 0·0001, day 1; P <  
0·0001, day 3; P = 0·0095, day 5; Figure 1(c)). The pri-
mary symptoms on day 1 were fatigue, sore or dry 
throat, and fever, and those on day 7 were cough, con-
gestion, or runny nose (Figure 1(d)). On days 1 and 3, 
the most unbearable symptom was fever (Fig. S1a). 
Furthermore, compared with naïve infections, a 
higher proportion of patients had a fever [20]. In 
addition, all these patients recovered without taking 
any antiviral medications.

Before the study, all volunteers had received three 
doses of the inactivated virus vaccine against the 
wild-type viral strain (Table S1). Among them, 11 vol-
unteers had received their last booster vaccination over 
300 days earlier. With BF.7 and BA.5, which were both 
closely related, as the predominant prevalent strains 
during this period, the antibody response to the wild 
type (WT), BF.7, and BA.5 strains was tested. The 
most apparent characteristic was that these patients 
had low antibody levels before disease onset, below 
the antibody levels 2–10 weeks after infection post-vac-
cination, and comparable to the levels retained 1 year 
after booster vaccination. However, these levels were 
significantly higher than those in patients who had 
neither been vaccinated nor infected P = 0.0066, WT; 
P = 0.0158, BA.5; P = 0.0027, BF.7. The antibody levels 
against the three variants were increased after infection, 
showing a significant di1erence on day 7 compared 
with pre-symptoms (P = 0·0453, WT; P = 0·0304, 
BA.5; P = 0·0464, BF.7). In some patients, antibodies 
had already increased highly by day 3 (Figure 1(e–g)). 
In a cross-sectional comparison of the antibody levels 
on day 1, the levels against WT were significantly 
higher than those against BF.7 (P = 0·0242) and BA.5 
(P = 0·0115). However, no significant di1erence was 
found at later time points, indicating that antibodies 
against the two variants had been induced more rapidly 
(Figure 1(h,i)). Dynamic trend of N protein antibody 
titers is essentially consistent with that of the RBD 
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group (Fig. S1b). Considering both the antibody levels 
and types of antibodies that respond quickly, the reac-
tions of these individuals are consistent with a memory 
immune response after a breakthrough infection.

Profile of bulk transcriptome during the 
breakthrough of the infection course

Bulk RNA sequencing was then performed on all 
samples. Utilizing agglomerative hierarchical cluster-
ing, Pre (red) and day 1 (green) were clearly clustered 
separately, indicating that the peripheral blood 

mononuclear cell (PBMC) transcriptome also under-
goes significant changes associated with symptom 
onset (Figure 2(a)). Furthermore, samples of pre- 
symptoms were grouped with some patients of day 
7, indicating that many patients had already returned 
to their pre-symptomatic state. The outlier, patient 4’s 
pre-symptom point, clustered with others’ day 1 
(Figure 2(a)), indicating that this patient might have 
already been in an infectious state at that time com-
bined with the sharply high levels of interferon-stimu-
lated genes (ISG)-dominated cytokines during the 
pre-symptom stage (Fig. S1c).

Figure 1. Symptoms development and dynamic of antibody response (a) Sample collection time points. Each coloured row rep-
resents a patient, and each point represents a sample collection. (b) The experiments conducted after collecting the samples, 
sample number = the sample number of for each experiment. n = the number of subjects for each experiment. (c) A dotted 
line graph shows the number of symptoms changing over time. The dot represents the mean. n = 13, the lines connect the 
means, and the error bars represent the standard error. (d) Changes in the percentage of just noticeable symptoms over time. 
(e-g) Area Under Curve (AUC) of spike RBD–specific IgG against WT (e), BA.5 (f), and BF.7 (g). (h) AUC of spike RBD–specific 
IgG against WT, BA.5, and BF.7. The line represents the mean and the error bars represent the standard error. (i) The ratio of 
day(X) AUC to uninfected baseline for RBD(WT), RBD(BA.5), and RBD(BF.7) in Patient 1 and 3 from days 1, 3, 5, and 7 post-symptom 
onset, illustrating the relative rise in antibody titers across variants.Sample number  = 47.
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After the removal of outliers, a Venn diagram 
analysis was conducted. The results indicate that the 
number of genes specifically expressed on day 1 was 
the highest, reaching 2,626. Subsequently, a rapid 
decline was noted, with only 90 specific expression 
genes remaining by day 7(Figure 2(b)). Then, top 8 
enriched Gene Ontology (GO) biological process 
analysis was conducted in each day (P-adjust < 0·001 

for all top 8 term in each day, Figure 2(c)). On day 
1, the predominant terms were defense response to 
the virus, innate immune response, and response to 
the virus. These processes decreased by day 3 and 
did not rank within the top 20 in days 5–7 
(Fig. S1d). Beginning on day 5, cell division and mito-
tic cell cycle processes were upregulated and contin-
ued through day 7, indicating PBMC proliferation 

Figure 2. Profile of bulk transcriptome during the breakthrough of the infection course. (a) Heatmap from the gene expression of 
bulk RNA transcriptomics and hierarchical clustering of samples; sample number = 47. The colour bar on the right represents the 
group of samples. The groups were defined through hierarchical clustering on scaled and filtered gene expression data, using K =  
9 based on silhouette coePcients. (b) Venn diagram comparing di-erent genes of each day to the pre-symptoms by bulk tran-
scriptome sequencing following the exclusion of samples from patient 4. Sample number = 42. Each colour represents one day. 
The ratio inside the parentheses represents the proportion of that quantity among all di-erentially expressed gene. (c) Top 8 
enriched Gene Ontology (GO) terms in each day. Colours represent enrich gene counts in this term. Red represents a higher quan-
tity, while blue represents a lower quantity. Asterisks denote the P-adjust value, with three asterisks indicating an adjusted P-value  
< 0·001. Sample number = 42.
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(Figure 1(c), Figure S1d). Overall, the transcriptome 
exhibits certain regular changes after symptoms 
appear; however, individual di1erences occur.

Trends in temporal changes in four types of 
plasma cytokines

Plasma cytokine levels were quantified using Olink 
proteomics. By analyzing temporal variations in 
92 cytokines, we identified four distinct trends 
(Figure 3(a)). The first trend, exemplified by monocyte 
chemotactic protein-1,2 (MCP-1,2), entails a rapid 
peak after symptom onset, and is followed by a swift 
decline, with a return to baseline levels between days 

3–5. The second trend, exemplified by CX3CL1, is 
marked by a slow decline after peaking with symptom 
onset, with a return to baseline levels around day 
7. The trend of the first two was consistent with the 
changes in symptoms. The third trend, exemplified 
by interleukin (IL-20) and Artemin (ARTN), features 
a continuous decline after symptom onset. The class 
4, with representative cytokines IL17A and IL17C, 
was characterized by a peak reached on day 
3. (Figure 3(b)). After classifying all cytokines, it was 
found that the cytokines related with type 1 immune 
responses[38], which focus on a robust proin3amma-
tory response to control infections and activate 
phagocytic cells, were primarily located within classes 

Figure 3. The trends of temporal changes in four types of plasma cytokines. (a) Heatmap displaying the four dynamic expression 
patterns of genes belonging to inflammatory panel of Olink proteomics during di-erent days. Left. Z-score of di-erent classes of 
cytokines in each day, Middle, trends in variation among di-erent Class and the number of cytokines they contain. Right, cytokines 
are categorized from the Class 1(C1) to Class4(C4). Sample number  = 42. (b) Representative genes of di-ering trends. Left, data 
are presented using fourth-order polynomial fitting. Right, each line represents the data from one patient. Solid lines represent the 
fitted curves, while the light-coloured areas represent the 95% confidence intervals. Sample number  = 42.
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1 and 2, whereas those related to type 2 immune 
responses[39], which promotes antibody production 
and supports responses that are more anti-in3amma-
tory and often focus on barrier protection and repair 
rather than on intense phagocytic activity, predomi-
nantly align with class 3. Consequently, before symp-
tom onset, the expression of type 2 cytokines[40] was 
already evident in peripheral blood, potentially 
corresponding to an early mucosal reaction in the 
respiratory tract. Subsequently, as a widespread anti-
viral response emerged in the peripheral blood, 
accompanied by various symptoms, the expression 
of type 2 cytokines gradually decreased, transitioning 
to a predominance of type 1 cytokine[41] 
(Figure 3(a)). Then, the transcriptomics data from 
peripheral blood PBMCs were analyzed, and a total 
of 39 plasma cytokines with corresponding genes 
expressed in PBMCs were identified. Certain class 1 
cytokines, such as CXCL10 and TRAIL, showed 
expression trends in PBMCs consistent with changes 
observed in the plasma (Fig. S2).

The challenge study included 34 young adult par-
ticipants who had neither received a SARS-CoV-2 vac-
cination nor had a documented infection. These 
individuals were intranasally inoculated with a pre- 
Alpha SARS-CoV-2 strain, representing naïve infec-
tions.[21]. We compared them with our participants 
who had been vaccinated against SARS-CoV-2 and 
later experienced breakthrough infections.The timing 
of day 1 in breakthrough infections closely aligned 
with day 4 in naïve infections (Figure 4). The change 
patterns of eight cytokines under the two infection 
scenarios were generally consistent, with similar 
trends observed in the fitted curves (CXCL10, rho =  
0·43, P < 0·001; MCP-1, rho = 0·33, P < 0·001; tumour 
necrosis factor [TNF], rho = 0·31, P < 0·001; CCL4, 
rho = 0·20, P < 0·001; IL10, rho = 0·21, P < 0·001; IL6, 
rho = 0·20, P < 0·001; IL18, rho = 0·08, P = 0·0259; 
interferon-gamma [IFN-k], rho = 0·12, P = 0·0015; 
Figure 4(a–h)). Interestingly, in naïve infections, a 
subset of cytokines (CXCL10, MCP-1, IL6, TNF, 
IL10, and IFN-k) exhibited a secondary rise on day 8 
(corresponding to day 5 of breakthrough infections) 
(Figure 4(a–e, h)). In contrast, breakthrough infec-
tions did not exhibit similar changes, except for IL10 
(Figure 4(a–h)). The peak levels of CXCL10, MCP-1, 
CCL4, IL10, IL6, and IFN-k in breakthrough infec-
tions were higher than those in naïve infections 
(Figure 4(i)). This demonstrates that certain cytokines 
exhibited a higher level of activation during the early 
stages of breakthrough infections. In summary, the 
consistency of the overall trend between naïve infec-
tions and breakthrough infections highlights the feasi-
bility and comparability of conducting early-stage 
immunological research in real-world settings, and 
the symptoms are associated with cytokine change 
trends 1 and 2.

Rapid ISG response and shift from antiviral to 
alarmin response among innate immune cells

To further explore intricate changes in diverse 
immune cells, single-cell and TCR/BCR sequencing 
were performed using frozen PBMCs from five 
patients in whom pre-symptom samples had been col-
lected. To enhance plasma cell yield, B cells were 
enriched and subsequently added to the original 
PBMCs at a ratio of 1:1 to enhance plasma cell yield. 
Then, 10,000 mixed cells per individual were captured 
and sequenced (Fig. S3a).

Cell clusters were identified using established mar-
kers (Table S2). Six major groups were annotated: T, 
B, plasma, natural killer (NK), myeloid, and proliferat-
ing cells (Figures 5(a), S4a, S4b). Myeloid, T, B, and 
plasma cells were further subdivided into subclusters 
(Fig. S3b–d) based on marker expression 
(Figure S4c, S4d, S5a–d). The numbers of myeloid 
cells increased significantly on day 1, T and NK cells 
notably decreased (Fig. S3e). Further analysis showed 
that classical monocytes were the most abundant 
myeloid cell population (Figure 5(b)). Within prolifer-
ating cells, the predominant subpopulations were NK, 
plasmablasts, and CD4 T cells (Fig. S6a–c).

In the analysis of the enrichment function across all 
subcluster cells by various terms, all subclusters 
peaked on day 1 in terms of ISGs, virus response, 
and immune response; however, these categories 
rapidly decreased. Most clusters returned to baseline 
homeostasis levels, except for the monocyte and den-
dritic cell (DC) subclusters (Figures 5(c), S7a, S7b). 
The enrichment of cell chemotaxis and in3ammatory 
response increased in myeloid cells and increased 
gradually (Figure 5(d), S7c). All subclusters were 
enriched for the term “cytokine production involved 
in immune response” on day 1. Enrichment within 
T cells quickly decreased, whereas the B subcluster 
cells remained continually activated until day 5. Mean-
while, the myeloid subcluster maintained its activation 
state through day 7 (Fig. S7d). The score of the cell 
cycle indicated that proliferating cells achieved the 
highest score on day 5, aligning well with BULK 
RNA-sequencing results (Fig. S7e).

Given the di1erent trends in changes observed in 
myeloid cells during the first 7 days, an in-depth 
analysis of these cells was performed. The top 5 
genes expressed by myeloid cells at various time points 
were analyzed (Figure 5(e), S8a–d). The results indi-
cated that in the first 3 days, the main highly expressed 
genes belonged to the ISG, including CXCL10 (P <  
0·01), IFIT1 (P < 0·01), IFIT2 (P < 0·01), IFIT3 (P <  
0·01), and ISG20 (P < 0·01), whereas S100A8 (P <  
0·01) and TNFSF10 (P < 0·01) were enriched in a par-
tial subcluster. On days 5 and 7, S100A8 (P < 0·01) and 
S100A9 (P < 0·01) emerged as the major highly 
expressed genes.
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In addition, a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis was conducted 
for these two continuously increasing biological pro-
cesses (cell chemotaxis and in3ammatory response) 

in five myeloid cell types. On day 1, the highly 
expressed genes were predominantly those associated 
with the pro-in3ammation immune response path-
way, such as Nucleotide-binding Oligomerization 

Figure 4. Compare the key cytokine changes between breakthrough and naïve infections. (a – h) Temporal changes in eight 
plasma inflammatory cytokines among breakthrough and naïve infections. For each graph, red lines represent cytokines from 
breakthrough infection, and blue lines represent cytokines from naïve infection. Left, Solid lines represent fourth-order polynomial 
fitting curves for the cytokines corresponding to the two patient groups. Light-coloured areas indicate the 95% confidence inter-
vals. Right, raw Olink proteomic/ELISA profiles for breakthrough and naïve infections. The black arrows indicate a secondary rise. n  
= 12 for breakthrough infection; n = 18 for naïve infection. (i) Comparison of the relative expression changes between naïve and 
breakthrough infections. For naïve infections, the change in relative expression levels was calculated by subtracting day 10 data 
from day 4 data. For breakthrough infections, the change in relative expression levels was calculated by subtracting day 7 data 
from day 1 data.
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Figure 5. Myeloid cells shift from an antiviral response to alarmin response. (a) UMAP of the classification of myeloid cells and 
lymphocytes based on the cell marker in Fig. S4a. (b) The line chart of the monocytes sub-classification percentage of myeloid 
cells. (c) Scores of the interferon stimulated genes between di-erent cell subsets over time. Samples exceeding the 
ThresholdActivation marked with black dots, clearly distinguishing between “activated” and “returned to baseline or not activated” 
states. ThresholdActivation = Xpre-symptom + 1 J F pre-symptom, Xpre-symptom represents the mean expression score in the pre-symptom 
phase, F pre-symptom represents the standard deviation. (d) Scores of the inflammatory response of GO term between di-erent cell 
subsets at each time point. (e) The volcano plot shows the top five expressed genes of classical monocytes at each time point. (f) 
Heatmap showing the five dynamic expression patterns of genes belonging to the inflammatory response GO term in cMono 
across di-erent days. The middle gray area shows the top five KEGG pathways that are enriched on the corresponding day. 
The vertical numbers represent the quantity of genes belonging to that pattern. The straight line in the left area represents 
the fitted curve for this cluster. The bar chart on the right represents the number of genes enriched in corresponding KEGG path-
ways. (g) Observed-to-Expected Ratio (Ro/e) analysis to quantify the association between immune cell subsets and clinical symp-
toms.Sample number  = 25.
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Domain-like Receptor (NOD) and TNF. On day 3, the 
NF-FB pathway was highly activated. These results are 
consistent with those observed in cytokine expression 
and bulk-sequencing analyses. The IL-17 and Toll- 
Like Receptor (TLR) pathways were activated on 
days 5 and 7 (Figure 5(f), S9, and S10). Subsequent 
analysis of the genes involved in IL-17 signaling 
revealed that multiple branches of the IL-17 pathway 
were activated on days 5–7, eventually releasing 
S100A8/A9 (Fig. S11a–c). Meanwhile, the elevation 
of plasma IL17A and IL17C levels both arise from 
day 3 (Figure 3, class 4), which is also consistent 
with the findings of single-cell studies. In addition, 
TLR4, which interacts with S100A8/A9 [42,43], was 
activated in myeloid cells (Fig. S12).

To investigate whether immune responses vary 
with symptom severity, we performed an Observed- 
to-Expected Ratio (Ro/e) analysis [44] to quantify 
the association between immune cell subsets and clini-
cal symptoms(Figure 5(g)). This method evaluates the 
degree of association by comparing the observed pro-
portion of a given immune cell subset in patients exhi-
biting a specific symptom to its expected proportion 
under a null distribution. The results revealed distinct 
immune correlates with di1erent symptoms. Fatigue 
was most strongly associated with an increased pro-
portion of monocytes, with a higher Ro/e value 
observed in patients experiencing severe fatigue. 
Cough was linked to elevated proportions of cDCs 
and classical monocytes, whereas soreness showed a 
strong correlation with naïve CD4 T cells. Fever was 
associated with an increased proportion of non-classi-
cal monocytes, pDCs, and Th2 cells, consistent with 
the role of pDCs in producing TNF-[ and IFN-[, 
which are known to drive febrile responses. Notably, 
patients with a higher proportion of Tfh cells tended 
to exhibit milder or no symptoms, suggesting that 
enhanced B-cell help and early viral neutralization 
may mitigate excessive immune-in3ammatory 
responses in breakthrough infections.

Overall, myeloid cells underwent the most dramatic 
changes, with a rapid rise in the proportion of classical 
monocytes after symptom onset and continued until 
day 7. All cell subpopulations exhibited transient anti-
viral and in3ammatory responses followed by rapid 
recovery. However, the response of myeloid cells 
gradually transitioned to an alarmin response, charac-
terized by the upregulation of S100A8/9 through the 
IL17 pathway. These results indicate that the increase 
in monocytes proposes a viral infection but is not sig-
nificantly associated with symptoms.

Early detection of B-cell and T-cell expansion by 
BCR and TCR repertoire analyses

BCR analysis revealed that the expanded clones con-
sisted predominantly of plasma cells (Fig. S13a–b). 

Further analysis of the BCR subtype demonstrated a 
rapid increase in IgG1 plasma cells over time. On 
day 7, IgG1 plasma cells comprised more than half 
of the total plasma cell population (Figure 6(a)). 
This rapid proliferation of IgG1 plasma cells indicates 
a rapid recall response. This finding aligns with the 
results presented in Figure 1(h). Subsequently, the 
temporal dynamics of biological processes were inves-
tigated within plasma cells. The results show that by 
day 1, ISGs were predominantly activated (response 
to type I IFN, P < 0·001; type I IFN signaling pathway, 
P < 0·001; cellular response to type I IFN, P < 0·001), 
presenting antiviral responses (response to the virus, 
P < 0·001; defense response to the virus, P < 0·001) 
and type I IFN immune reactions. By day 3, antigen 
recognition signals became activated (antigen recep-
tor-mediated signaling pathway, P < 0·001). Day 5 
was primarily characterized by enriched signaling 
for proliferation (covalent chromatin modification 
P < 0·001), whereas day 7 mainly involved enhanced 
endoplasmic reticulum (ER) activity (protein targeting 
to ER, P < 0·001), indicating antibody secretion 
(Figure 6(b)). The changes in this biological process 
are entirely consistent with previously described 
variations in the numbers of proliferating cells 
(Fig. S6), IgG1 plasma cell proportion (Figure 6(a)), 
and antibody titers (Figure 1(h)). Subsequently, 
IGHV utilized in the plasma were analyzed. Our analy-
sis of B-cell V(D)J data revealed that hypermutated 
clones – specifically, IGHV3-23 (red) and IGHV4-59 
(blue) – were already present in pre-symptom plasma 
samples with their mutation rates remaining stable 
during the first 7 days post-infection. This suggests 
that these clones predominantly derive from memory 
B cells induced by prior vaccination. On Day 1, 
IGHV3-23 exhibited the highest usage frequency, 
indicating its rapid mobilization upon initial viral 
exposure. However, as infection progressed and anti-
genic selection pressure from the Omicron variant 
increased, IGHV3-23 frequency declined while 
IGHV4-59 became increasingly dominant. Previous 
studies have associated IGHV3-23 with infections 
by wild-type and pre-Omicron variants, and 
IGHV4-59 with Omicron infections[45, 46], support-
ing the notion of a clonal replacement process: 
the initially mobilized IGHV3-23 clone, which 
o1ers a rapid response, is gradually supplanted by 
IGHV4-59, which may possess a higher ahnity for 
mutated Omicron epitopes. Alternatively, IGHV4- 
59 might inherently require a higher antigen concen-
tration or prolonged stimulation due to its initial 
lower ahnity, indicating a delayed activation despite 
its pre-existing memory origin (Figure 6(c,d)) 
[47, 48].

The ratio analysis revealed an increase in the pro-
portion of e1ector CD8 T cells on day 1, followed by a 
decrease. No obvious change in the proportion of Th1 
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cells was noted during the first 7 days (Fig. S3f). Sub-
sequent analysis focused on the sequencing results of 
the TCR and T-cell function. The results showed that 

e1ector CD8 T cells predominantly underwent clonal 
expansion. Simultaneously, a clonal expansion of a 
small number of e1ector memory CD8, MAIT, Th1, 

Figure 6. Early detection of B cell and T cell expansion by BCR and TCR repertoire analysis. (a) Proportion of di-erent antibody 
subtypes in plasma cells over time as determined by BCR analysis. (b) Top five enriched Gene Ontology (GO) terms each day. 
Counts and P-adjust values were labelled in the bar corresponding to the term. The X-axis represents the proportion of all di-er-
entially expressed genes. (c) The polar plot shows the mean usage proportion of VH genes on the day of pre-symptoms to day7. 
(d) Mutation rate analysis of IGHV3-23 and IGHV4-59. (e) Clonotypes of TCRs between di-erent T cell subsets. (f) Changes in cell 
proportion and clonotypes within clones that were singular prior to symptom onset and began to expand post-symptom emer-
gence. (g) Highly expressed genes at various time points for the clones selected in Figure 5(f). Sample number = 25.
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and kq T cells occurred (Figure 6(e), S3d, S13c, d). After 
selecting the single clone at the pre-symptomatic point 
for analysis, the clone expanded slowly and did not 
immediately transform into a large one from days 1 to 
7 (Figure 6(f), S14a). Analysis of the [] VJ pairs used 
by these clones revealed that they predominantly con-
sisted of TRAV/DV4-TRAJ20-TRBV9-TRBJ2-3 
(Fig. S14b). Notably, TRAV/DV4 was considered 
associated with COVID-19 [48]. Similarly, we analyzed 
the [] VJ pairs that formed large clones before symptom 
onset and maintained this status consistently. The analy-
sis showed that they primarily consisted of three pairing 
combinations, and no evidence links them to COVID- 
19 (Fig. S14c). Analysis of the enriched GO (Fig. S15a) 
and gene expression (Figure 6(g)) in clones that were 
single before symptom onset and then expanded 
revealed that by day 1, genes related to ISGs were predo-
minantly activated (response to IFN-k, P < 0·001, 
Fig. S15a). By day 3, the activation of genes associated 
with antigen presentation was observed (antigen recep-
tor-mediated signaling pathway, P < 0·001, Fig. S15a). 
Simultaneously, high expression of cell cycle-related 
genes such as Cyclin H (CCNH) indicates that these 
cells are proliferating (Figure 6(g)). From days 5 to 7, 
the initiation of specific adaptive immune functions 
was evident, notably through IFN-k expression 
(Figure 6(g)), which signifies a transition to Cytotoxic 
T Lymphocyte (CTL). Moreover, pathways linked to 
viral replication were activated at the pre-symptomatic 
phase (P < 0·001). This signifies the actual phase of 
viral activation and replication, with several ribosomal 
proteins (RPLs) being hijacked for use at incubation 
periods (Fig. S15a). During days 5–7, pathways related 
to viral replication were reactivated (P < 0·001), with 
an increased number of RPLs observed. This period 
may correspond to a prelude to a massive activation of 
e1ector T cells, resulting in protein synthesis (Fig. S15b).

Overall, clonal expansions of T and B cells were 
observed in the early stage. The particular expansion 
of IgG + plasma cells contributed to a rapid increase 
in IgG antibodies. E1ector T cells did not exhibit 
large clonal expansions, further indicating that these 
patients were all in the early stages of infection.

Discussion

This study represents the detailed longitudinal investi-
gation of the acute immune response to SARS-CoV-2 
breakthrough infection in the real world. Symptom 
onset was designed as the starting point. Multi- 
omics technologies were employed to assess the base-
line status of pre-symptoms. This study focused on 
examining various aspects of the immune responses 
in the first 7 days and analyzed their relationship 
with clinical symptoms. Thus, this real-world study 
mimics a breakthrough infection. Through this exper-
imental design, the immune response changes during 

the transition from incubation infection to break-
through infection were successfully captured. In the 
incubation periods (pre-symptoms), peripheral blood 
cytokine results indicate that this stage of infection 
induces a type 2 immune response. However, it is 
ine1ective in suppressing the virus, leading to break-
through infections. The onset of symptomatic break-
through infection is accompanied by changes in 
peripheral blood cytokines (mainly ISGs, indicating 
an IFN response) and types of cells in PBMCs (with 
changes in their transcription states, transitioning to 
a type 1 immune response). A primary concern of 
this study is to ascertain the state before symptom 
manifestation. Given the heterogeneity within the 
population, some individuals exhibit significant 
immunological changes even before symptoms 
become apparent[49]. Thus, by utilizing transcrip-
tomics to categorize overall gene expression and the 
blood cytokine dynamics, patient 4, despite being at 
the pre-symptom stage, was found to be already in a 
state comparable to that of other patients on day 1 
of symptom onset. Moreover, the gene expressions 
of other pre-symptomatic samples cluster together, 
e1ectively illustrating their consistency. In addition, 
the comparison of the cytokine profiles in naïve infec-
tions revealed similarities between these two trends, 
demonstrating the feasibility of conducting immuno-
logical research starting from symptom onset.

Why do breakthrough infections occur? The pri-
mary reason is the decline in antibody levels. In this 
study, the participants demonstrated significantly 
lower antibody levels before disease onset, consistent 
with the antibody waning observed in other studies 
[50, 51]. Despite the well-known protective role of 
antibodies against symptomatic infections [52], the 
challenge lies in maintaining stable levels of protective 
antibodies. This phenomenon has been observed 
across various types of vaccines[51] and natural infec-
tion, and the specific causes remain unclear. Accord-
ing to current research, a notable aspect was that the 
severity of initial infection was significantly related 
[50, 53]. Therefore, the variability in individual 
responses to vaccines may be directly related to the 
duration of antibody maintenance and the speed at 
which memory immune responses are elicited, war-
ranting further investigations. Certainly, variants 
also play a crucial role in breaking through infections, 
a finding confirmed both in epidemiology[54] and 
clinical trials[19]. In this study, variants are equally 
important. Moreover, the rapidness of the memory 
response plays a significant role in the manifestation 
of symptoms. In this study, antibody levels signifi-
cantly increase by day 7, with a shift in CD8 T cells 
to CTL occurring between days 5 and 7. Thus, before 
the enhanced activation of the memory immune 
response, viral invasion was detected by innate 
immune cells, accompanied by the manifestation of 
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symptoms. By days 5 and 7, as adaptive immunity was 
increasingly activated and innate immunity began to 
wane, a marked decrease in symptoms was observed.

In this study, specific e1ector CD8 T cells did not 
form large clones within 7 days of symptom onset, 
nor was there a significant change in their numbers 
(Fig. S3f). These results indicate that in the recall 
immune response, the response of e1ector CD8 T 
cells is delayed and does not provide e1ective protec-
tion to prevent infection in the early stages. Numerous 
animal studies have confirmed that CD8 T cells play a 
crucial role in preventing severe disease. Therefore, 
the primary role of CD8 T cells is to prevent severe 
disease rather than to prevent infection and alleviate 
symptoms, consistent with the results of previous 
research[55, 56].

Intriguingly, a notable change, from an antiviral 
response of the intracellular ISGs to an alarmin 
response marked by the secretion of S100A8/A9, was 
observed in myeloid cells. Recent studies have associ-
ated the appearance of S100A8/A9/12 with severe 
COVID-19 progression[23, 24]. In addition, S100A8/ 
A9 have been proposed to act as endogenous TLR4 
agonist[42, 57]. However, our results present that 
the expression of those alarmins in myeloid cells 
does not directly contribute to systemic in3ammatory 
response, as S100A8/A9 is released via the IL17 path-
way[58] and myeloid expression of IL17RA were syn-
chronously detected (Figure 3(a), Fig. S11a, b). 
Furthermore, S100A8/9 possesses multiple functions 
such as antibacterial activity[59–62]. A previous 
study showed that lower levels of S100A8/A9 in neo-
nates were associated with a higher risk of bacterial 
infections after birth[25]. Building on our findings, 
we propose that the expression of S100A8/A9 primar-
ily represents a natural response reserved for immune 
defense against potential secondary bacterial infec-
tions, a common complication following respiratory 
viral infections.

In this study, while the patterns of change in most 
cytokines were relatively similar between break-
through and naïve infections, some intriguing di1er-
ences were noted. Pro-in3ammatory cytokines, 
including CXCL10, MCP-1, IL6, TNF, IL10, and 
IFN-k, exhibited a higher proportion of bimodal 
expression in naïve infection, whereas in break-
through infection, their expression levels were predo-
minantly unimodal (Figure 4(a–d,h)). This 
phenomenon becomes clearly discernible only after 
depicting individual changes[21]. This presents that 
hosts facing an initial infection might not be able to 
directly control viral replication and may need to elev-
ate the levels of in3ammatory cytokines again to coun-
teract virus spread. This could also indicate a stronger 
cellular damage in response to a first-time infection, 
leading to a subsequent rise in in3ammatory signaling. 
Conversely, for breakthrough infection, immune 

memory and training of innate immunity may lead 
to a single peak response that controls the disease pro-
gression in most patients[63]. Meanwhile, CXCL10, 
CCL4, IL10, IL6, MCP-1, and IFN-k have a slightly 
higher elevation than the first peak in breakthrough 
infection, which may also indicate the significant 
role of innate immune memory (Figure 4).

Our study holds significant practical implications 
and potential translational applications. In break-
through infections, most proin3ammatory cytokines 
exhibit a single, sharp peak rather than the multiple 
3uctuations observed in primary infections, suggesting 
that vaccination can induce a more ehcient and rapid 
in3ammatory response. This finding provides valuable 
insights for developing therapeutic strategies that 
modulate early in3ammation to clear the virus and pre-
vent cytokine storms. Furthermore, we found that even 
when the initial vaccine was targeted at a strain di1erent 
from the current one, activated memory B cells can 
rapidly produce cross-reactive antibodies to e1ectively 
counter new variants, underscoring the importance of 
continued vaccination despite imperfect vaccine 
matching to emerging strains. Finally, the elevation of 
S100A8/9 may re3ect a normal early immune response 
rather than disease progression, suggesting that it 
should not be used as a sole biomarker for severe dis-
ease. Recognizing these nuances can help optimize 
diagnostic strategies, guide the design of adjunct immu-
notherapies, and reinforce public health policies aimed 
at reducing breakthrough infections through high vac-
cination coverage.

This study has some limitations. First, this study 
has a small sample size. In addition, because of the 
rapid spread of infection, many participants became 
infected without suhcient time to obtain baseline 
samples, resulting in the availability of only post-infec-
tion data. Given the widespread expectation of infec-
tion, participants were particularly vigilant about 
symptom onset, which also greatly facilitated the com-
pletion of this study. We are also seeking to expand 
our cohort in future work. Second, the participants 
were 23–35 years old, all being young adults. There-
fore, the generalizability of the findings to older and 
paediatric populations may be somewhat limited. 
Third, all participants experienced breakthrough 
infections; therefore, their immune responses rep-
resent those of patients with breakthrough infections. 
Fourth, variabilities exist between individuals with 
breakthrough infection from this study and those 
with naïve infection from the referenced 2024 Sci 
Immunol study. Although we controlled for certain 
demographic factors, these variables may still intro-
duce bias into the comparative analysis.

In summary, we performed an in-depth dynamic 
analysis of the acute-phase immune response to 
SARS-CoV-2 breakthrough infection. This real- 
world SARS-CoV-2 challenge study provides a 
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reference for interpreting immunological basis for this 
virus infectious disease, which are important impli-
cations for vaccine development, immune response 
prediction, and understanding the association 
between symptoms and immunological response.
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